Skip to content

bufferWhen - Dynamic End Control Buffer

The bufferWhen operator publishes an array of values with dynamically controlled end conditions. It provides a continuous buffering pattern where one buffer ends and the next buffer starts immediately.

🔰 Basic Syntax and Usage

ts
import { interval } from 'rxjs';
import { bufferWhen, take } from 'rxjs';

const source$ = interval(500); // Emit values every 0.5 seconds

// End condition: after 1 second
const closingSelector = () => interval(1000);

source$.pipe(
  bufferWhen(closingSelector),
  take(4)
).subscribe(console.log);
// Output:
// [0]           (Starts at 0 sec → Ends at 1 sec, value 0 only)
// [1, 2, 3]     (Starts at 1 sec → Ends at 2 sec, values 1,2,3)
// [4, 5]        (Starts at 2 sec → Ends at 3 sec, values 4,5)
// [6, 7]        (Starts at 3 sec → Ends at 4 sec, values 6,7)

Flow of operation:

  1. First buffer starts automatically
  2. Observable returned by closingSelector() emits a value → Buffer ends, outputs array
  3. Next buffer starts immediately (often at the same time as source$ emission)
  4. Repeat 2-3

NOTE

The first buffer only contains [0] because it's the 1 second period until interval(1000) emits its first value. From the second buffer onwards, buffer start and source$ emission coincide, so they contain more values.

🌐 RxJS Official Documentation - bufferWhen

🆚 Difference from bufferToggle

bufferWhen and bufferToggle are similar, but their control methods and behavior patterns are very different.

bufferWhen Behavior

ts
import { interval } from 'rxjs';
import { bufferWhen, take } from 'rxjs';

const source$ = interval(300).pipe(take(12)); // Emit 0-11 every 300ms

// bufferWhen: Control only end (next starts immediately after end)
source$.pipe(
  bufferWhen(() => interval(1000))
).subscribe(console.log);
// Output: [0, 1, 2], [3, 4, 5], [6, 7, 8, 9], [10, 11]
//
// Timeline:
//  0ms   300ms  600ms  900ms  1200ms 1500ms 1800ms 2100ms 2400ms 2700ms 3000ms 3300ms 3600ms
//  0     1      2      3      4      5      6      7      8      9      10     11
//  [----------1sec----------][----------1sec----------][----------1sec----------][-----1sec-----]
//   Buffer1(0-2)              Buffer2(3-5)              Buffer3(6-9)             Buffer4(10-11)
//   Continuous, no overlap, next starts immediately

bufferToggle Behavior

ts
import { interval } from 'rxjs';
import { bufferToggle, take } from 'rxjs';

const source$ = interval(300).pipe(take(12)); // Emit 0-11 every 300ms

// bufferToggle: Separate control of start and end (can overlap)
const opening$ = interval(1000); // Start every 1 second
const closing = () => interval(800); // End 800ms after start

source$.pipe(
  bufferToggle(opening$, closing)
).subscribe(console.log);
// Output: [3, 4, 5], [6, 7, 8], [9, 10, 11]
//
// Timeline:
//  0ms   300ms  600ms  900ms  1200ms 1500ms 1800ms 2100ms 2400ms 2700ms 3000ms 3300ms
//  0     1      2      3      4      5      6      7      8      9      10     11
//        ----Start1(1000ms)----[---End after 800ms(1800ms)---]
//                        3      4      5
//                        └→ [3,4,5]
//                    ----Start2(2000ms)----[---End after 800ms(2800ms)---]
//                                            6      7      8
//                                            └→ [6,7,8]
//                              ----Start3(3000ms)----[---End after 800ms(3800ms)---]
//                                                      9      10     11
//                                                      └→ [9,10,11]
//  Waits for start trigger, periods are independent (0-2 before buffer start not included)

Main Differences

OperatorStart ControlEnd ControlBuffer PeriodFeature
bufferWhen(closing)Auto (immediately after end)DynamicContinuousNo gap between buffers
bufferToggle(open$, close)Independent ObservableDynamicIndependent, can overlapGap between buffers

Usage guidelines:

  • bufferWhen: Buffer all data continuously without omission (logging, data aggregation, etc.)
  • bufferToggle: Collect data only during specific periods (during business hours, button presses, etc.)

TIP

  • Continuous buffering (no data leakage) → bufferWhen
  • Limited period buffering (explicit start/end control) → bufferToggle

💡 Typical Usage Patterns

  1. Data Collection at Dynamic Time Intervals

    ts
    import { interval, timer } from 'rxjs';
    import { bufferWhen, map } from 'rxjs';
    
    // Sensor data
    const sensorData$ = interval(100).pipe(
      map(() => ({
        timestamp: Date.now(),
        temperature: 20 + Math.random() * 10
      }))
    );
    
    // End condition: Dynamically change based on previous temperature
    let previousAvgTemp = 25;
    
    sensorData$.pipe(
      bufferWhen(() => {
        // Higher temperature = shorter buffer interval
        const duration = previousAvgTemp > 27 ? 500 : 1000;
        return timer(duration);
      })
    ).subscribe(data => {
      const avgTemp = data.reduce((sum, d) => sum + d.temperature, 0) / data.length;
      previousAvgTemp = avgTemp;
      console.log(`Average temp: ${avgTemp.toFixed(1)}°C, Samples: ${data.length}`);
    });
  2. Adaptive Batch Processing Based on Load

    ts
    import { fromEvent, timer } from 'rxjs';
    import { bufferWhen, map } from 'rxjs';
    
    interface Task {
      id: number;
      timestamp: number;
    }
    
    // Task stream
    let taskCounter = 0;
    const tasks$ = fromEvent(document, 'click').pipe(
      map(() => ({
        id: taskCounter++,
        timestamp: Date.now()
      } as Task))
    );
    
    // Adjust next buffer period based on buffer size
    tasks$.pipe(
      bufferWhen(() => timer(2000))
    ).subscribe(bufferedTasks => {
      if (bufferedTasks.length > 0) {
        console.log(`Batch processing: ${bufferedTasks.length} tasks`);
        console.log('Task IDs:', bufferedTasks.map(t => t.id));
    
        // Dynamically determine next buffer period
        // (In practice, move this logic inside bufferWhen function)
      }
    });
  3. Sampling at Random Intervals

    ts
    import { interval, timer } from 'rxjs';
    import { bufferWhen, map } from 'rxjs';
    
    // Data stream
    const data$ = interval(100).pipe(
      map(i => ({
        value: Math.sin(i / 10) * 100,
        timestamp: Date.now()
      }))
    );
    
    // Buffer at random intervals (500ms ~ 2000ms)
    data$.pipe(
      bufferWhen(() => {
        const randomDelay = 500 + Math.random() * 1500;
        return timer(randomDelay);
      })
    ).subscribe(samples => {
      const avg = samples.reduce((sum, s) => sum + s.value, 0) / samples.length;
      console.log(`Sample count: ${samples.length}, Average: ${avg.toFixed(2)}`);
    });

🧠 Practical Code Example (Load-Based Log Collection)

This is an example of dynamically changing log collection frequency based on system load.

ts
import { interval, timer, fromEvent } from 'rxjs';
import { bufferWhen, map, share } from 'rxjs';

// Create UI elements
const container = document.createElement('div');
document.body.appendChild(container);

const title = document.createElement('h3');
title.textContent = 'Adaptive Log Collection System';
container.appendChild(title);

const loadButton = document.createElement('button');
loadButton.textContent = 'Generate Load';
container.appendChild(loadButton);

const status = document.createElement('div');
status.style.marginTop = '10px';
status.style.padding = '10px';
status.style.backgroundColor = '#f0f0f0';
status.textContent = 'Low load: Collect at 5-second intervals';
container.appendChild(status);

const logDisplay = document.createElement('pre');
logDisplay.style.marginTop = '10px';
logDisplay.style.padding = '10px';
logDisplay.style.backgroundColor = '#f9f9f9';
logDisplay.style.maxHeight = '300px';
logDisplay.style.overflow = 'auto';
container.appendChild(logDisplay);

// Log stream (always generating)
let logCounter = 0;
const logs$ = interval(200).pipe(
  map(() => ({
    id: logCounter++,
    level: Math.random() > 0.7 ? 'ERROR' : 'INFO',
    message: `Log message ${logCounter}`,
    timestamp: new Date()
  })),
  share()
);

// Load counter (increment on button click)
let loadLevel = 0;
fromEvent(loadButton, 'click').subscribe(() => {
  loadLevel = Math.min(loadLevel + 1, 5);
  updateStatus();
});

// Decrease load every 30 seconds
interval(30000).subscribe(() => {
  loadLevel = Math.max(loadLevel - 1, 0);
  updateStatus();
});

function updateStatus() {
  const interval = getBufferInterval(loadLevel);
  const loadText = loadLevel === 0 ? 'Low load' :
                   loadLevel <= 2 ? 'Medium load' : 'High load';
  status.textContent = `${loadText} (Level ${loadLevel}): Collect at ${interval / 1000}-second intervals`;
  status.style.backgroundColor =
    loadLevel === 0 ? '#d4edda' :
    loadLevel <= 2 ? '#fff3cd' : '#f8d7da';
}

function getBufferInterval(load: number): number {
  // Higher load = shorter buffer interval
  switch (load) {
    case 0: return 5000;  // 5 seconds
    case 1: return 3000;  // 3 seconds
    case 2: return 2000;  // 2 seconds
    case 3: return 1000;  // 1 second
    case 4: return 500;   // 0.5 seconds
    default: return 300;  // 0.3 seconds
  }
}

// Adaptive buffering
logs$.pipe(
  bufferWhen(() => timer(getBufferInterval(loadLevel)))
).subscribe(bufferedLogs => {
  if (bufferedLogs.length > 0) {
    const errors = bufferedLogs.filter(log => log.level === 'ERROR').length;
    const timestamp = new Date().toLocaleTimeString();

    const summary = `[${timestamp}] Collected: ${bufferedLogs.length} items (Errors: ${errors})\n`;
    logDisplay.textContent = summary + logDisplay.textContent;

    console.log('Collected logs:', bufferedLogs);
  }
});

📋 Type-Safe Usage

Here is an example of a type-safe implementation utilizing generics in TypeScript.

ts
import { Observable, interval, timer } from 'rxjs';
import { bufferWhen, map } from 'rxjs';

interface MetricData {
  value: number;
  timestamp: Date;
  source: string;
}

interface BufferConfig {
  minDuration: number;
  maxDuration: number;
  adaptive: boolean;
}

class AdaptiveBuffer<T> {
  constructor(private config: BufferConfig) {}

  private getNextBufferDuration(previousCount: number): number {
    if (!this.config.adaptive) {
      return this.config.minDuration;
    }

    // Adjust next buffer period based on data volume
    const ratio = Math.min(previousCount / 10, 1);
    const duration =
      this.config.minDuration +
      (this.config.maxDuration - this.config.minDuration) * (1 - ratio);

    return Math.floor(duration);
  }

  apply(source$: Observable<T>): Observable<T[]> {
    let previousCount = 0;

    return source$.pipe(
      bufferWhen(() => {
        const duration = this.getNextBufferDuration(previousCount);
        return timer(duration);
      }),
      map(buffer => {
        previousCount = buffer.length;
        return buffer;
      })
    );
  }
}

// Usage example
const metricsStream$ = interval(300).pipe(
  map(i => ({
    value: Math.random() * 100,
    timestamp: new Date(),
    source: `sensor-${i % 3}`
  } as MetricData))
);

const buffer = new AdaptiveBuffer<MetricData>({
  minDuration: 1000,  // Minimum 1 second
  maxDuration: 5000,  // Maximum 5 seconds
  adaptive: true      // Adaptive
});

buffer.apply(metricsStream$).subscribe(metrics => {
  if (metrics.length > 0) {
    const avg = metrics.reduce((sum, m) => sum + m.value, 0) / metrics.length;
    console.log(`Buffer size: ${metrics.length}, Average: ${avg.toFixed(2)}`);
  }
});

🎯 Comparison with Other Buffer Operators

ts
import { interval, timer, Subject } from 'rxjs';
import { buffer, bufferTime, bufferCount, bufferWhen, bufferToggle, take } from 'rxjs';

const source$ = interval(300).pipe(take(10)); // 0-9

// 1. buffer: Fixed trigger
const trigger$ = new Subject<void>();
source$.pipe(buffer(trigger$)).subscribe(console.log);
setInterval(() => trigger$.next(), 1000);
// Output: [0, 1, 2], [3, 4, 5], ... (at trigger timing)

// 2. bufferTime: Fixed time interval
source$.pipe(bufferTime(1000)).subscribe(console.log);
// Output: [0, 1, 2], [3, 4, 5], [6, 7, 8], [9]

// 3. bufferCount: Fixed count
source$.pipe(bufferCount(3)).subscribe(console.log);
// Output: [0, 1, 2], [3, 4, 5], [6, 7, 8], [9]

// 4. bufferWhen: Dynamic end control (continuous)
source$.pipe(
  bufferWhen(() => timer(1000))
).subscribe(console.log);
// Output: [0, 1, 2], [3, 4, 5], [6, 7, 8], [9]

// 5. bufferToggle: Independent start/end control (can overlap)
const opening$ = interval(1000);
const closing = () => timer(800);
source$.pipe(
  bufferToggle(opening$, closing)
).subscribe(console.log);
// Output: [3, 4, 5], [6, 7, 8]
OperatorTriggerDynamic ControlOverlapUse Case
bufferExternal ObservableEvent-driven
bufferTimeFixed timePeriodic aggregation
bufferCountFixed countQuantitative processing
bufferWhenDynamic (end only)Adaptive batch processing
bufferToggleDynamic (start and end)Complex period management

⚠️ Common Mistakes

WARNING

The bufferWhen end condition function must return a new Observable each time. If it returns the same Observable instance, it will not work properly.

Error: Returning the Same Observable Instance

ts
import { interval, timer } from 'rxjs';
import { bufferWhen } from 'rxjs';

const source$ = interval(500);

// ❌ Bad example: Reusing the same Observable instance
const closingObservable = timer(1000);

source$.pipe(
  bufferWhen(() => closingObservable) // Won't work from 2nd time onwards!
).subscribe(console.log);
// Only the first buffer is output, nothing after that

Correct: Return a New Observable Each Time

ts
import { interval, timer } from 'rxjs';
import { bufferWhen } from 'rxjs';

const source$ = interval(500);

// ✅ Good example: Generate new Observable each time
source$.pipe(
  bufferWhen(() => timer(1000)) // Generate new timer each time
).subscribe(console.log);
// Output: [0, 1], [2, 3], [4, 5], ...

IMPORTANT

The closingSelector function is always called each time the previous buffer ends, and is expected to return a new Observable.

🎓 Summary

When to Use bufferWhen

  • ✅ When you want to dynamically control the end condition
  • ✅ When continuous buffering periods are needed
  • ✅ When you want to adjust the next period based on previous buffer results
  • ✅ When you want to implement adaptive batch processing

When to Use bufferToggle

  • ✅ When you want to control start and end independently
  • ✅ When buffer periods may overlap
  • ✅ When there are clear start/end events, such as button presses

When to Use bufferTime

  • ✅ When buffering at fixed time intervals is sufficient
  • ✅ When a simple implementation is required

Notes

  • ⚠️ closingSelector must return a new Observable each time
  • ⚠️ Overly complex end conditions make debugging difficult
  • ⚠️ With adaptive controls, testing is important to avoid unexpected behavior

🚀 Next Steps

Released under the CC-BY-4.0 license.